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We investigate the effects of geometrical micro-irregularities on the conversion
efficiency of reactive flows in narrow channels of millimetric size with
heterogeneous catalysis. Three-dimensional simulations, based upon a Lattice-
Boltzmann-Lax–Wendroff code, indicate that micro-corrugations may have
an appreciable effect on the effective reaction efficiency of the device. Once
extrapolated to macroscopic scales, these effects can result in a sizeable increase
of the overall reaction efficiency.
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1. INTRODUCTION

Modern modelling science is confronted with phenomena of increasing
complexity involving the simultaneous interaction of multiple spatio-tem-
poral scales. The quantitative description of such complex phenomena
commands sophisticated multidisciplinary approaches. (1) A typical example
of such complex multiscale phenomena is the dynamics of reactive flows,
a subject of wide interdisciplinary concern, with several applications in
macro and micro-engineering, material science, biology, environmental and
life sciences alike. The complexity of reactive flow dynamics is parame-
trized by three dimensionless quantities: the Reynolds number Re, the
Damkohler number Da, and the Péclet number Pe. High Reynolds numbers
areassociatedwithturbulence,namely lossofcoherenceof theflowfield inboth



space and time. High Damkohler numbers imply that chemistry is much
faster than hydrodynamics, so that reactions are always in chemical equi-
librium and take place in tiny regions (thin flames, reaction pockets) of
evolving flow configurations. The opposite regime (‘‘well-stirred’’ reactor)
characterizes situations where the chemistry is slow and always takes place
at local mechanical equilibrium. The Péclet number, defined as

Pe=
UH
D

where U is a typical macroscopic flow speed, H a typical macroscopic
length and D is the mass diffusivity of the generic transported species, plays
a prominent role. High Péclet numbers imply that the transported species
stick tightly to the fluid carrier (in the limit Pe Q. the tracer field is
‘‘frozen-in’’ within flow streamlines). Conversely, low-Péclet regimes imply
fast diffusion of the tracer across the flow field, efficient mixing hence
higher reaction efficiency.

Navigation across the three dimensional Re–Da–Pe parameter space
meets with an enormous variety of chemico-physical behaviours, ranging
from turbulent combustion to hydrodynamic dispersion and many others. (2)

The picture gets further complicated when geometry is taken into account,
since boundary conditions select the spatio-temporal structures sustaining
the non-linear interaction between the various fields. In this work we shall
deal with moderate-Reynolds, reacting flows with heterogeneus catalysis. In
particular, we wish to gain insight into the role of geometric micro-irregu-
larities on the effective rate of absorption of tracer species (pollutant here-
after) at catalytic boundaries.

Given the fact that almost all chemical reactions of industrial and
biological relevance are catalytic, the subject of catalytic absorption is a a
theme of broad interest, with applications in biology, physics, chemistry
and environmental sciences. (3)

This paper is organized as follows: In Section 2 we present the basic
aspects of the mathematical model, while in Section 3 details of the com-
putational model are discussed. In Section 4 we present some analytical
considerations to estimate the effects of geometric irregularities on the
catalytic efficiency. In Section 5 we present numerical results referring to a
fast-reacting micro-channel flow with a single perpendicular barrier on the
bottom wall. In Section 6 results pertaining to a slow-reacting flow with a
trapezoidal corrugation are presented and compared with previous numer-
ical and experimental data. Finally, some considerations on the need to
assist numerical simulations with scaling theories to predict the efficiency
of macroscopic devices are offered.
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2. MATHEMATICAL MODEL OF REACTIVE MICROFLOW DYNAMICS

We shall deal with a quasi-incompressible, isothermal flow with soluted
species which are transported (advect and diffuse) by the flow and, upon
reaching solid walls, undergo catalytic chemical reactions. The basic equa-
tions of fluid motion are:

“tr+div ruF=0 (1)

“truF+div ruFuF=−NP+div[m(NuF+(NuF ))T+l div uF] (2)

where r is the flow density, uF the flow speed, P=rT the fluid pressure,
T the temperature and m, l are the shear and bulk dynamic viscosities
respectively (for the present case of quasi-incompressible flow with
div uF ’ 0 the latter can safely be ignored). Finally, uFuF denotes the dyadic
tensor uaub, a, b=x, y, z.

Multispecies transport with chemical reactions is described by a set of
generalized continuity-diffusion equations for Ns species:

“tCs+div CsuF=div[DsCTN(Cs/CT)]+Ẇsd(xF−xFw)

s=1, Ns
(3)

where Cs denotes the mass density of the generic sth species, Ds its mass
diffusivity, CT=; s Cs the total mass of transported species and Ẇs is a
chemical reaction term which is non-zero along the reactive surface
described by the coordinate xFw. Note that the diffusive term on the right-
hand-side of Eq. (3) secures mass conservation upon summation over all
species because CT=;s Cs (we assume Ds=D for all species).

According to Fick’s law, the outgoing (bulk-to-wall) diffusive mass
flow is given by:

Cw=F
S
u+C|wall−D“+C|wall dS (4)

where + denotes the normal-to-wall coordinate and S is the area of the
exchange surface between the fluid and the solid wall. Upon contact with
solid walls, the transported species react according to the following
empirical rate equation (the species index being removed for simplicity):

Ẇ —
dCw

dt
=
Cw

V
−KcCw (5)
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where V is the reaction volume. The wall-flux is taken in the simple linear
form:

Cw=Kw(Cg−Cw) V (6)

where Kw is the wall to/from fluid mass transfer rate and Kc is the chemi-
cal reaction rate dictating species consumption once a molecule is absorbed
by the wall. The subscripts w and g mean ‘‘wall’’ (solid) and ‘‘gas’’ in a
contact with the wall respectively. The above rate equation serves as a
dynamic boundary condition for the species transport equations, so that
each boundary cell can be regarded as a microscopic chemical reactor sus-
tained by the mass inflow from the fluid. In the absence of surface chemical
reactions the species concentration in the solid wall would pile up in time,
up to the point where no outflow would occur, a condition met when
Cg=Cw. Chemistry sets a time scale for this pile-up and fixes the steady-
state mass exchange rate. At steady state we obtain:

Cw=
Kw

Kw+Kc
Cg (7)

hence

Cw=
Cg

yw+yc
(8)

where yw=1/Kw and yc=1/Kc. These expressions show that finite-rate
chemistry (Kc > 0) ensures a non-zero steady wall outflux of pollutant. At
steady state, this mass flow to the catalytic wall comes into balance with
chemical reactions, thus fixing a relation between the value of the wall
concentration and its normal-to-wall gradient (we set uF+ |w=0):

−D“zCg|w=dCg/(yc+yw)

where d is the thickness (volume/area) of the reactive cell. This is a mixed
Neumann-Dirichlet boundary condition which identifies the free-slip length
of the tracer as:

ls=D(yw+yc)/d

This expression shows that in the limit of infinitely fast chemistry and wall
transfer, the free-slip length tends to zero so that the cross-flow distribution
of the tracer develops a vanishingly thin near-wall boundary layer (‘‘reac-
tion sheet’’). In actual practice, the fluid cells in contact with reactive
boundary cells receive a diffusive-advective mass flux from the bulk flow
[Eq. (4)] and transfer to the wall a contribution given by Eq. (6).
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3. THE COMPUTATIONAL METHOD

The flow field is solved by a lattice Boltzmann method (4–7) while the
multi-species transport and chemical reactions are handled with a variant
of the Lax–Wendroff method. (8) A few details are given in the following.

3.1. Lattice Boltzmann Equation

The simplest, and most popular form of lattice Boltzmann equation
(Lattice BGK, for Bhatnagar, Gross, Krook), (7) reads as follows:

fi(xF+cFi, t+1)−fi(xF, t)=−w[fi−f
e
i ](xF, t) (9)

where fi(xF, t) — f(xF, vF=cFi, t) is a discrete distribution function moving
along the discrete speed cFi. The set of discrete speeds must be chosen in
such a way as to guarantee mass, momentum and energy conservation, as
well as rotational invariance. Only a limited subclass of lattices qualifies.
In the sequel, we shall refer to the nineteen-speed lattice consisting of zero-
speed, speed one c=1 (nearest neighbor connection), and speed c=`2,
(next-nearest-neighbor connection). This makes a total of 19 discrete
speeds, 6 neighbors, 12 nearest-neighbors and 1 rest particle (c=0). The
right hand side of (9) represents the relaxation to a local equilibrium fei in
a time lapse of the order of w−1. This local equilibrium is usually taken in
the form of a quadratic expansion of a local Maxwellian:

fei=rwi 51+
uF · cFi
c2s
+
uFuF · (cFicFi−c

2
s I)

2c4s
6 (10)

where wi is a set of weights, wi=4/9, 1/9, 1/36 for particles of speed
c=0, 1,`2 respectively in the 19-speed lattice considered here. Finally,
cs is the lattice sound speed defined by the relation

c2s I=
; i wicFicFi
d

(11)

where d is the space dimensionality and I denotes the identity tensor. For
the 19-speed lattice considered here c2s=1/3. The fluid density and speed
are obtained by (weighted) sums over the set of discrete speeds:

r=C
i
fi, ruF=C

i
ficFi (12)

where we have assumed a unit mass for the fluid particles.
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LBE was historically derived as the one-body kinetic equation result-
ing from many-body Lattice Gas Automata via the following conceptual
steps are:

• Neglect of many-body correlations

• Small Knudsen number expansion around local equilibria

• Small Mach number expansion around global uniform equilibria

We remind here that the Knudsen number is the ratio of particle mean-free
path versus the smallest hydrodynamic length, whereas the Mach number is
the ratio of fluid to sound speed. This analysis shows that the LBE fluid
behaves like a quasi-incompressible fluid with kinematic viscosity:

n=c2s (1/w−1/2)

Owing to its flexibility toward grossly irregular geometries, the LBE has
proved a very competitive tool for the numerical studies of hydrodynamic
flows in grossly irregular geometries since its earliest days. (9)

3.2. Modified Lax–Wendroff Scheme for Species Transport

Numerical schemes to integrate passive/active scalar equations within
the LBE formalism come in a variety of choices. The simplest formulations
are based on the introduction of an additional set of discrete populations,
which evolve according to a simple LBE such that the population density
corresponds to the desired scalar concentration C. These schemes are
seamlessly coupled to LBE for the fluid flow, but very expensive in com-
puter storage since any additional species requires at least 2d discrete pop-
ulations in spatial dimension d. The other extreme is to couple LB to any
generic finite-difference/volume/element solver. This does not waste any
computer storage, but may require some interfacing effort with LBE if the
finite-difference grid does not coincide with the LBE lattice. A convenient
choice in this respect is provided by a variant of the Lax–Wendroff
scheme recently developed precisely to address multicomponent fluid
transport (and reaction) within a LBE-like language. Here we present a
summary of the basic ideas behind this LBE-Lax Wendroff scheme, direct-
ing the reader fond of full details to the original reference. (8) The first
observation is that since species transport equation is linear in the species
concentration, we can solve it on a simple 2d-neighbors cubic lattice.
Within this approach, each species is associated with a species density Cs,
which splits into 2d+1 separate contributions along the lattice links plus
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the lattice site itself. To the purpose of a compact notation, it proves expe-
dient to denote the neighborhood of a given node by two indices l=−1,
0, 1 and a=x, y, z, so that xFla=xF+lâ denotes the neighbor along the
direction ±a, l=0 characterizing the node itself.

Note that the transport lattice is simply the subset of the LBE lattice
restricted to zero-speed and speed-one particles.

Prior to discretization, a few analytic manipulations of the transport
equation are in order. In particular, we recast (3) in the following standard
advection-diffusion form

“tCs+div CsuF
−

s=DsDCs (13)

where the effective speed uF −s is the sum of the fluid speed and an ‘‘apparent’’
speed due to inhomogeneities of the total concentration:

uF −s=uF+ũFs (14)

ũFs=Ds
NCT
CT

(15)

A simple Lax-scheme for Eq. (13) is known to introduce a high numerical
viscosity, Dnum, a=

1
2d (1−du

−2
a ) in lattice units. To remove this undesirable

effect we add a counter-diffusive term −DnumD to the transport equation,
whose consequences shall be commented shortly. After all these prepara-
tions, we can finally write the transport operator in d dimensions in full
splendor (still lattice units and with species index suppressed for simplicity):

C(xF, t)=C
l

C
a
pla(t−1) C(xFla, t−1)+qla(t−1) (16)

where:

pla(t−1)=
1
2
11
d
+lu −a 2+D −a, l=±1 (17)

D −a=D−
1
2d
(1−du −2a ) (18)

p0=−2 C
a
D −a (19)

qla(t−1)=−
l
8
u −a C

b ] a
u −b C

l
lC(xFla) (20)
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with u −a is evaluated at xFla, t−1. The transition coefficients pla represent the
contribution to the concentration at xF at time t from the neighbor xFla at
t−1. The sources qla collect instead the contribution of the next-to-nearest
neighbors, which are due exclusively to second order cross-derivatives of
the velocity-dependent component of the effective diffusivity D −a. It is
readily checked that transition probabilities and sources obey the following
sum rules:

C
la
pla=1 (21)

C
la
qla=0 (22)

This rearrangement proves fairly convenient from both computational and
analytical purposes. In fact, it can be be shown by linear stability analysis
that the resulting Lax–Wendroff scheme becomes hyper-diffusive (diffusion
effects are shifted to fourth-order) without loosing stability (see Appendix
of ref. 8). This is a very useful property for reactive flow simulations. The
same analysis, as well as numerical experiments, also show that the scheme
is affected by phase-errors which tend to develop spurious wiggles (Gibbs
phenomena) if the fluid moves ‘‘too fast,’’ meaning by this a cell-Péclet
number in excess of about ten: u

−

D > 10 in lattice units. This qualifies the
present Lax–Wendroff scheme as a good candidate for (relatively) slow
reactive flows, such as those addressed in the present work.

3.3. Multiple Time Scales

The simulation of a reactive flow system is to all effects a multi-physics
problem involving five distinct time scales:

1. Fluid Advection and Diffusion

yA=L/U,

yn=H2/n
(23)

where L, H are the length and height of the fluid domain.

2. Species Diffusion, Wall-Mass Transfer and Reaction

yD=H2/D,

yw=K
−1
w ,

yc=K
−1
c

(24)
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As discussed in the introduction, these time scales define the major dimen-
sionless parameters

Re=UH/n — yA/yn, (25)

Pe=UH/D — yD/yA, (26)

Dac=yf/yc, Daw=yf/yw (27)

where f stands for fluid advection and/or diffusion.
To acknowledge the simultaneous presence of multiple time scales,

a sub-cycled time-stepper is adopted. This is organized as follows. The code
ticks with the hopping time of the fluid populations from a lattice site to its
neighbors dt=1. Under all circumstances dt is much smaller than both
diffusive and advective fluid scales in order to provide a faithful description
of fluid flow and transport. Whenever dt exceeds the chemical/wall trans-
fer time-scales, fractional time-stepping, i.e., sub-cycling of the correspond-
ing process is performed. This means that the chemical and wall transfer
operators are performed dt/yc, dt/yw times respectively at each fluid cycle.
As it will be appreciated shortly, since the flow solver ticks at the sound
speed, the present microflow simulations proceed in very short time steps,
of the order of tens of nanoseconds. This means that the present scheme
can in principle be coupled to mesoscopic methods, such as kinetic Monte
Carlo, affording a more fundamental description of the fluid-wall interactions.

4. CATALYTIC EFFICIENCY: QUALITATIVE ANALYSIS

Ideally, we would like to synthesize a universal functional dependence
of the catalytic efficiency as a function of the relevant dimensionless
numbers and geometrical design parameters:

g=F(Re, Da, Pe; ḡ) (28)

where ḡ represents a vector of geometric parameters characterizing the
boundary shape. The question is to assess the sensitivity of g to ḡ and pos-
sibly find an optimal solution (maximum g) within the given parameter
space. Mathematically, this is a complex non-linear functional optimization
problem. (10) We find it convenient to start from a simple—and yet represen-
tative—baseline geometry as an ‘‘unperturbed’’ zeroth order approximation,
which is easily accessible either analytically or numerically. Perturbations to
this baseline situation can then be parametrized as ‘‘topological excitations’’
on top of the geometrical ‘‘ground state.’’ In the present study, the unper-
turbed geometry is a straight channel of size L along the flow direction (x)
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and H×H across it (y, z). Perturbations are then defined as micro-
corrugations in the bottom wall of the form z=h(x, y), h — 0 being the
smooth-wall unperturbed case. An important design parameter is the
device efficiency, defined as the amount of pollutant burned per unit mass
injected:

g=
Fin−Fout
Fin

(29)

where

F(x)=F [uC](x, y, z) dy dz (30)

is the longitudinal mass flow of the pollutant at section x. The in-out lon-
gitudinal flow deficit is of course equal to the amount of pollutant
absorbed at the catalytic wall, namely the normal-to-wall mass flow rate:

C=F
S
cF(x, y, z) · dSF (31)

where the flux consists of both advective and diffusive components:

cF=uFC−DNC (32)

and the integral runs over the entire absorbing surface S. The goal of the
optimization problem is to maximize C at a given Fin and S, or, conversely,
minimize S at a given Fin. As it is apparent from the above expressions,
this means maximizing complex configuration-dependent quantities, such
as the wall distribution of the pollutant and its normal-to-wall gradient.
For future purposes, we find it convenient to recast the catalytic efficiency
as g=1−T, where T is the channel transmittance, defined as:

T — Fout/Fin (33)

basically the probability for a tracer molecule injected at the inlet to exit
the channel without being absorbed by the wall. Roughly speaking, this is
controlled by the ratio of advection to diffusion time scales. More preci-
sely, the escape rate is high if the cross-channel distance walked by a tracer
molecule in a transit time yA is much smaller than the channel cross-length
H/2. Mathematically: DyA °H2/4, which is:

Pe ± 4L/H (34)
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The above inequality (in reverse) shows that in order to achieve high con-
version efficiencies, the longitudinal aspect ratio L/H of the device has to
scale linearly with the Péclet number.

4.1. Efficiency of a Smooth Channel: Analytic and Scaling

Considerations

For a smooth channel, the steady state solution of the longitudinal
concentration field away from the inlet boundary factors into the product of
three independent one-dimensional functions: C(x, y, z)=X(x) Y(y) Z(z).
Replacing this ansatz into the steady-state version of Eq. (3) we obtain:

X(x)=X0e−x/l

Y(y)=Y0 sin(y/ly)

Z(z)=Z0 sin(z/lz)

(35)

with the longitudinal and cross-flow absorption lengths related via:

l=(l2y+l
2
z)
Ū
D

(36)

where Ū is the average flow speed

Ū(x)=C
y, z
u(x, y, z) C(x, y, z);C

y, z
C(x, y, z) (37)

Note that because we stipulate that only the top and bottom walls host
catalytic reactions, the profile along the span-wise coordinate y remains
almost flat, so that we can define a transversal cross-flow diffusion length
l+ ’ ly. To determine the cross-flow diffusion length l+ we impose that
along all fluid cells in a contact with the wall, the diffusive flux is exactly
equal to fluid-to-wall outflow, namely:

C
l2+
=
Cg
y

2
Nz

(38)

where y the effective absorption/reaction time scale,

1
y
’
1
yD
+

1
(yc+yw)

(39)
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and the factor 2/Nz is the fraction of reactive cells along any given cross-
section x=const. of the channel. The form factor Cg/C is readily obtained
by the third of Eqs. (35) which yields

Cg
C

4 cos(H/2ł+) (40)

Combining this equation with Eq. (38) we obtain a non-linear algebraic
equation for l+ :

l2 cos(1/2l)=
Dy
H2
Nz
2

(41)

where we have set l — l+/H. For each set of parameters this equation can
be easily solved numerically to deliver l+ , hence l via the Eq. (36). Given
the exponential dependence along the stream-wise coordinate x, the effi-
ciency can then be estimated as:

g0 4 1−e−L/l (42)

Note that in the low absorption limit L° l, the above relation
reduces to g0 ’ L/l, meaning that halving, say, the absorption length
implies same efficiency with a twice shorter catalyzer. In the opposite high-
absorption limit, L± l, the relative pay-off becomes increasingly less
significant.

4.2. Efficiency of a Corrugated Channel: Analytical Estimates

Having discussed the baseline geometry, we now turn to the case of
a ‘‘perturbed’’ geometry. Let us begin by considering a single barrier of
height h on the bottom wall (see Fig. 1). The reference situation is a
smooth channel at infinite-Damkohler (infinitely fast chemistry) with
g0=1−e−L/l. We seek perturbative corrections in the smallness parameter

g — h/H

representing the the coupling-strength to geometrical perturbations and,
more practically, a measure of the relative amount of reactive extra-surface
contributed by the corrugation.

The unperturbed wall-flux is

C0 ’ 2D
Ch
h
LH (43)

354 Succi et al.



Fig. 1. Typical geometrical set up with a single barrier.

where Ch/h is an estimate of the normal-to-wall diffusive gradient. The
geometrical gain due to extra-active wall surface is

C1 4 ChuhhH (44)

where

uh 4 4U0(g−g2) (45)

is the average longitudinal flow speed in front of the barrier. The shadowed
region of size w in the wake of the obstacle yields an (advective) contribution

C2 ’ aD
Ch
h
wH (46)

where the coefficient a is a measure of the absorption activity in the wake
region.

Three distinctive cases can be identified:

• a < 1: The wake absorption is smaller than with unperturbed flow
(geometrical shielding prevails)

• a=1: The wake absorption is exactly the same as for unperturbed
flow

• a > 1: The wake absorption is higher than with unperturbed flow
(back-flowing micro-vortices can hit the rear side of the barrier).
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Combining these expressions we obtain the following expression:

dg

g0
=
C1+C2−C2(h=0)

C0
’
h
2L

Reh(Sc+K(a−1)) (47)

where Sc=n/D is the Schmidt number (fluid viscosity/tracer mass diffu-
sivity) and the wake length can be estimated as w=K Reh with K ’ 0.1.

The above expression shows a perturbative (quadratic) correction in h
over the unperturbed (smooth channel situation). However, since the effec-
tive absorption in the shielded region is affected by non-linear phenomena,
the factor a may itself exhibit a non-perturbative dependence on h.

5. APPLICATION: FAST-REACTIVE FLOW OVER A MICRO-BARRIER

The previous computational scheme has been applied to a fluid
flowing in a millimeter-sized box of size 2×1×1 millimeters along the
x, y, z directions with a single barrier of height h on the bottom wall (see
Fig. 1). The fluid flow carries a bulk-passive pollutant, say an exhaust gas
flow, which is absorbed at the channel walls where it reacts due to
heterogeneus catalysis. The flow is forced with a constant volumetric force
which mimics the effects of a pressure gradient. The exhaust gas is contin-
uously injected at the inlet, x=0, with a flat profile across the channel and,
upon diffusing across the flow, it reaches solid walls where it gets trapped
and subsequently reacts according to a first order catalytic reaction:

C+AQ P (48)

where A denotes an active catalyzer and P the reaction products. The initial
conditions are:

C(x, y, z)=1, x=1 (49)

C(x, y, z)=0, elsewhere (50)

r(x, y, z)=1 (51)

u(x, y, z)=U0, v(x, y, z)=w(x, y, z)=0 (52)

The pollutant is continuously injected at the inlet and released at the open
outlet, while flow periodicity is imposed at the inlet/outlet boundaries. On
the upper and lower walls, the flow speed is forced to vanish, whereas the
fluid-wall mass exchange is modeled via a mass transfer rate equation of
the form previously discussed. We explore the effects of a sub-millimeter
barrier of height h on the bottom wall. The idea is to assess the effects of
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the barrier height, h on the chemical efficiency. Upon using a 80×40×40
computational grid, we obtain a lattice with dx=dy=dz=0.0025 (25
microns), and dt=cs dx/Vs ’ 50 · 10−9 (50 nanoseconds). Here we have
assumed a sound speed Vs=300 m/s and used the fact that the sound
speed is cs=1/`3 in lattice units. Our simulations refer to the following
values (in lattice units): U0 ’ 0.1−0.2, D=0.1, n=0.01, KC=KW=0.1.
This corresponds to a diffusion-limited scenario:

yc=yw=10 < yA ’ 800 < yD=16000 < yn=160000 (53)

or, in terms of dimensionless numbers:

Pe ’ 40, Re ’ 400, DaA=80, DaD=1600 (54)

We consider a single barrier of height h placed in the middle of the bottom
wall at x=L/2, z=0, with: h/H=0.05, 0.1, 0.2. For the sake of com-
parison, the case of a smooth wall (h=0) is also included. The typical
simulation time-span is t=32000 time-steps, namely about 1.6 milliseconds
in physical time, corresponding to two mass diffusion times across the
channel. The physico-chemical parameters given above are close to cataly-
tic converter operation, apart from the chemical time scales which have
been taken according to a fast-chemistry assumption.

With the above parameters we may estimate the reference efficiency
for the case of smooth channel flow. With Ū ’ 0.1, and y=20, we obtain
l ’ 200, hence g0 ’ 0.33. A typical two-dimensional cut of the flow pattern
and pollutant spatial distribution in the section y=H/2 is shown in Figs. 2
and 3, which refer to the case h=8 (h/H=0.1). An extended (if feeble)
recirculation pattern is well visible past the barrier. Also, enhanced con-
centration gradients in correspondence of the tip of the barrier are
recognized from Fig. 3. A more quantitative information is conveyed by
Fig. 4, where the integrated concentration of the pollutant:

C(x)=C
y, z
C(x, y, z) (55)

is presented for the cases h=0, 2, 4, 8. The main highlight is a substantial
reduction of the pollutant concentration with increasing barrier height.
This is qualitatively very plausible since the bulk flow is richer in pollutant
and consequently the tip of the barrier ‘‘eats up’’ more pollutant than the
lower region. In order to gain a semi-quantitative estimate of the chemical
efficiency, we measure the pollutant longitudinal mass flow:

F(x)=C
y, z
[Cu](x, y, z) (56)
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u(x,z) at y=L/2: t=32000

U=-0.01

U=0.15
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Fig. 2. Streamwise velocity isocontours with a single barrier of heigth h=8 at t=32000.

The values at x=1 and x=L define the efficiency according to equation
(29) (to minimize finite-size effects actual measurements are taken at x=2
and x=70). Leaving aside the initial portion of the channel, our numerical
data are well fitted by an exponential with absorption length l=200, in a
good agreement with the theoretical estimate l 4 200 obtained by solving
Eqs. (36) and (38). The corresponding results are shown in Table I, where
subscript A refers to the analytical expression (47) with a=1.

These results are in a reasonable agreement with the analytical estimate
(47) taken at a=1 (same absorption as the smooth channel). However, for
h=8 the assumption a=1 overestimates the actual efficiency, indicating

Fig. 3. Concentration isocontours with a single barrier of heigth h=8 at t=32000.
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h=0, 2, 4, 8 after 32000 steps. The dashed-dotted line represents an exponential fit with the
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Table I. Single Barrier at x=40: The Effect of Barrier Heigth on

the Catalytic Efficiency. Second Column: Barrier Height versus

Channel Height. Third Column: Conversion Efficiency, Numerical

Data. Fourth Column, Left: Relative Perturbation Due to the

Barrier, Numerical Results. Fourth Column, Right: Relative Per-

turbation Due to the Barrier, Analytical Estimate

Run h/H g
dg

g ,
dgA
gA

R00 0 0.295 0.00
R02 1/20 0.301 0.02,0.025
R04 1/10 0.312 0.06,0.10
R08 2/10 0.360 0.22,0.40
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that the shielded region absorbs less pollutant than in the smooth-channel
scenario. Indeed, inspection of the transversal concentration profiles
(Fig. 5) along the chord x=3L/4, y=H/2 reveals a neat depletion of the
pollutant in the wake region due to the shielding effect of the barrier.
Besides this efficiency-degrading effect, the barrier also promotes a poten-
tially beneficial flow recirculation, which is well visible in Fig. 6 showing
the time evolution of the stream-wise velocity u(z) in the mid-line
x=3L/4, y=H/2 at t=3200 and t=32000. This figure reveals that
recirculating back-flow only sets in for h=8. However, these recirculation
effects are feeble (the intensity of the recirculating flow is less than ten
percent of the bulk flow) and depletion remains the dominant mechanism.
In fact for h=8 the measured local Péclet number is of the order
0.01 · 8/0.01=0.8, seemingly too small to promote appreciable micro-tur-
bulent effects. We conclude that, for blunt obstacles such as perpendicular
barriers, shielding effects are likely to outdo the benefits of recirculation. It
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Fig. 5. Transverse pollutant concentration C(z) at x=3L/4 and y=H/2. Single barrier of
varying height, h=0, 4, 8 at t=32000.
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should also be noticed that raising the barrier height has an appreciable
impact on the bulk flow as well, which displays some twenty percent
reduction due to mechanical losses.

6. TRAPEZOIDAL CORRUGATION

As a second application, we investigate a trapezoidal corrugation,
a case of practical relevance for automotive catalytic applications. The ref-
erence situation is a fluid flow consisting of an exhaust gas at at P=1 Atm
and T=600°K, carrying carbon mono-oxide CO as a main pollutant. The
exhaust gas is continuously injected at the inlet, x=0, and upon reaching
solid walls, carbon mono-oxide reacts with oxygen molecules according to
the catalytic reaction:

2CO+O2=2CO2 (57)
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The initial conditions in the bulk flow are:

rCO=0, rgas=const. (58)

ux=const., uy=uz=0 (59)

We consider a 3×1×1 millimeter channel, traversed by a flow at a
speed of the order of 10 meters/second. Carbon mono-oxide is continu-
ously injected at the inlet and released at the open outlet. In the present
work, we explore the effects of a 0.1 millimeter-high trapezoidal micro-
corrugation on the bottom wall with height h and 45° degrees side angles
(see Sketch 1). Our simulations refer to the following values (in lattice
units): u ’ 0.1, D=0.1, n=0.01, KC=KW=0.001, corresponding to a
slow-chemistry scenario (in lattice units):

yA ’ 600, yC=yW=1000 < yD=4000 (60)

Re ’ 200, Pe ’ 20, DaA ’ 0.6, DaD ’ 4 (61)

The physico-chemical parameters given above are close to the working
conditions of a catalytic converter, except for the chemical time scale,
which, in order to reduce the simulation time-span is placed in the 100
microseconds range, about an order of magnitude faster than ordinary
values.

Sketch 1. Template of a trapezoidal corrugation with h=4 in a x–z cross section. Each
letter represents a lattice site. F: fluid, B: boundary. (The vertical direction is stretched out.)
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Fig. 7. Streamwise velocity field in the mid-span cross-section, y=10 at t=12000.

Let us now come to the actual results. A typical two-dimensional cut
of the flow pattern is shown in Fig. 7, from which a high-shear flow in the
near-obstacle region is again apparent. The corresponding two-dimensional
CO pattern is shown in Fig. 8. The integrated concentration along the
channel is shown in Fig. 9. Much of the observed depletion is purely geo-
metrical (the channel restriction) and the truly dynamical effect is best
appreciated by inspecting the longitudinal longitudinal outflow F(x).
Comparison with the smooth-channel scenario shows a very tiny but yet
visible effect (see Fig. 10). Inspection of the actual numbers (taken 20 sites
away from the outlet in order to minimize boundary effects) yield
T0=0.953 (smooth channel) and T=0.946, namely g0=0.047 versus

C(x,z) at y=L/2,t=12000
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Fig. 8. Isocontours of the CO concentration in the mid-span section y=10 at t=12000.
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g=0.054. This corresponds to dg/g0 ’ 0.15, which is significantly higher
than the purely geometrical increase of the reactive surface:

2h(`2−1)/2L ’ 0.053

This is not surprising since owing to the relatively smooth shape of the
obstacle, the flow ‘‘sticks’’ closely to the trapezoidal corrugation with only
a minor detachment in the wake region, so that it can benefit of enhanced
cross-flow concentration gradients. The conclusion is that relatively smooth
obstacles are likely to provide a better catalytic efficiency.

6.1. Up-Scaling to Macroscopic Devices

It is important to realize that even tiny improvements on the microscopic
scale can result in pretty sizeable cumulative effects on the macroscopic scale
of real devices, say 10 centimeters in the case of catalytic converters. Let us

364 Succi et al.



16

16.5

17

17.5

18

18.5

19

10 20 30 40 50 60

L
o
n
g
it
u
d
in

a
l 
C

O
 m

a
s
s
 f

lu
x

X

'Trapezoidal'
'Smooth'

Fig. 10. Longitudinal CO mass flow rate at t=12000.

assume for simplicity that the efficiency of an array of N serial micro-
channels can be estimated simply as

gN=1−TN (62)

On a scale of L=10 centimeters (N=50) our simulation yields g0=0.973
and g=0.984, much higher than experimental observation. This is due
to the artificially faster chemistry used to save computing time. Realistic
(and time consuming) simulations with ten times slower chemistry yield
R0=0.977, R=0.972, which on a scale of 10 centimeters, correspond to
g0 ’ 0.687 and g ’ 0.758, in a good agreement with experimental evidence
and previous two-dimensional simulation work. (11) It is clear that extrapo-
lation to macroscopic scales based on the equation (62) must be taken very
cautiously. In fact, a tight synergy between computer simulation and ana-
lytical scaling theories is called for in order to make robust predictions at
the macroscopic scale.
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7. CONCLUSIONS

This work presents an exploratory study of the complex hydro-chemical
phenomena which control the effective reactivity of catalytic devices of
millimetric and centimetric size. These simulations shed light on the com-
petition between various non-perturbative effects, such as shielding and
micro-recirculation in the wake of geometrical obstrusions, which are
hardly amenable to analytical treatment. It is hoped that the flexibility of
the present computer tool, as combined with semi-analytical scaling
theories, can be of significant help in developing semi-quantitative intuition
about the subtle and fascinating interplay between geometry, chemistry,
diffusion and hydrodynamics in the design of chemical traps, catalytic
converters and other related devices. (12)
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